Posted tagged ‘radio telescope’

Event Horizon for the Human Race—Moving Beyond Our Own Boundaries

April 11, 2019

The Event Horizon Telescope (EHT) on Hawai’i’s Mauna Kea and Atacama’s Large Submillimeter Array (SMA) answered some cosmic prayers this week.

Event Horizon Discovery by Global AstroSci Team

Summit of Mauna Kea at 13,000ft has ideal microclimate for Harvard-Smithsonian Event Horizon 8-telescope array

The Submillimeter Array of eight radio telescopes alongside the James Clerk Maxwell Observatory on the summit of Mauna Kea, Hawai’i have sent earthling skywatchers skyrocketing with delight, as they released their first picture of Messier-87—a super-dense neutron region or ‘black hole’ in Virgo galaxy this week.

Hawai’i is crucial to Event Horizon (EHT)’s world network. Its high volcanic setting provides cloud-free receiving/bending of its own multiple signal—from three points in an array of eight new [radio]telescopes, top, with Mauna Kea Observatory’s James Clerk Maxwell 49-foot dish telescope, and reusing CalTech’s nearby CSO ‘redundant’ observatory.

Previously co-funded by Great Britain, Canada and Netherlands, EHT is presently co-sponsored by Harvard-Smithsonian Astrophysical Observatory, Cambridge, Massachusetts with the Academia Sinica, and a consortium of astrophysics interests from Taiwan, China, Japan, South Korea and Chile. EHT is in international partnership with the European Southern Observatory (ESO), the U.S. National Science Foundation (NSF), the National Institutes of Natural Sciences (NINS) of Japan, together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea). Vital cooperation is the link with the Republic of Chile—where ALMA‘s 66 high-precision antennae are located on the Chajnantor plateau, at 5000 meters altitude/one mile high in northern Chile.
(ALMA)=Atacama Large Millimeter/submillimeter Array

Event Horizon Telescope —EHT— world’s 1st super-array captures its first picture of ultra-dense neutron region M-57 in constellation Virgo

The Event Horizon Telescope—EHT—is a global array of radio telescopes involving dozens of institutions and astrophysicists round the world. Breakthrough discovery by the EHT is an image of Messier 87 (M-87)’s supermassive neutron black hole at the center of the Virgo galaxy cluster, 55 million light years away. This neutron-dense region contains 6.5 billion times the mass of our Sun.

Affectionately named ‘black holes’ are extremely compressed cosmic objects, containing extraordinary amounts of mass packed densely into a tiny region of space. This mass is shrouded by an event horizon—a boundary beyond which nothing—not even light—can escape its electromagnetic/gravitational pull.

They affect their surroundings in extreme ways, including warping spacetime and heating surrounding material to hundreds of billions of degrees. Albert Einstin in his 1915 Theory of General Relativity predicted that a black hole would cast a circular shadow on its bright, glowing material. The newly-released image of M87 from EHT reveals this shadow.

Light emitted from inside the event horizon can never reach the outside observer. Likewise, any object approaching the horizon from the observer’s side appears to slow down and never quite pass through the horizon—its image becoming more and more redshifted as time elapses. This means that the wavelength of the light emitted from the object is getting longer as the object moves away from the observer. The traveling object, however, experiences no strange effects and does, in fact, pass through the horizon in a finite amount of ‘proper’ time.

As high as the Swiss Alps, Mauna Kea hosts climate-immune radiotelescope array for worldwide science cooperative

Black hole event horizons are widely misunderstood. Common, although erroneous, is the notion that black holes vacuum up material in their neighborhood, where in fact they are no more capable of seeking to consume than any other gravitational attractor. As with any mass in the universe, matter must come within its gravitational scope for the possibility to exist of capture or consolidation with any other mass. Equally common is the idea that matter can be observed falling into a black hole. This is not possible either.

Astronomers can detect only accretion disks around black holes, where material moves with such speed that friction creates detectable high-energy radiation. Matter from these accretion disks is forced out along the axis of spin of the black hole, creating visible jets where the streams interact with matter—such as interstellar gas—or if they happen to be aimed directly at Earth.
J.A.Peacock Cosmological Physics, 1999

A distant observer—or world-class telescope array—will never actually see something reach the horizon. Instead, while approaching its edge, the object will seem to go ever more slowly, while any light it emits will be further and further redshifted.

Earth-size Telescope Dish
In order to see a black hole for the first time, the Event Horizon Telescope team hooked up an array of radio telescopes in Hawai’i, Central and South America (Atacama), Europe, Greenland and Antarctica, with the Harvard-Smithsonian Center for Astrophysics (CfA) dish in Cambridge, MA.

EHT signals from global telescope network create earth-size dish receiver, beamed Mauna Kea HI to Cambridge MA for image resolution by the EHT team

Using a technique known as very long baseline (vLBI) interferometry, the CfA-MIT team took precisely-timed data from each radio telescope, combining them to produce images comparable with what an Earth-hemisphere-sized dish would capture. The resulting virtual telescope has the highest resolution of any instrument ever built on earth, in orbit within the Solar System—or even beyond the Heliopause where Voyagers I & II entered Interstellar Space.

We’re a melting pot of astronomers, physicists, mathematicians and engineers. That’s what it took to achieve something once thought impossible.
Katie Bouman, PhD CfA elec.engineer/computer sci
Co-author six papers in Astrophysical Journal Letters

EHT’s image reveals that this enormous black hole—large enough to engulf the solar system—anchors a jet that extends outwards for tens of thousands of light years.

Hawai’i’s Mauna a Wakea—white mountain—multiple telescope array at 13,803feet on the dormant volcano played crucial role in Event Horizon success

There are already plans to expand the EHT: to enable the team to make time-lapse movies of the dynamics of this (newly-discovered) living system, and to discover how the jet draws its energy from this negative source.

Creating the EHT was a formidable challenge which required upgrading and connecting a worldwide network of thirteen pre-existing telescopes deployed at a variety of challenging high-altitude sites. These locations included volcanoes in Hawai`i and Mexico, mountains in Arizona and the Spanish Sierra Nevada, the Chilean Atacama Desert, and Antarctica.

All Very Baseline Interferometry
Event Horizon observations use a technique called very-long-baseline interferometry (VLBI) which synchronizes 13 telescopes around the world, using earth’s rotation to form one huge, Earth-size telescope observing at a wavelength of 1.3 mm. This lets EHT achieve an angular resolution of 20 micro-arc-seconds—enough to read a newspaper in New York from a sidewalk café in Paris.

From Chile’s Atacama high desert to Spain’s Sierra Nevada to Mauna Kea’s multiple array, telescopes worldwide combined to bring new images beyond human expectation and belief

Resolution of the EHT image depends on separation distance between the telescopes—the baseline—and the short-millimeter radio wavelengths captured around the world. EHT’s finest resolution is achieved by the longest baseline, which for M87 stretches from Hawai’i to Spain and Greenland to Antarctica. To optimize long baseline sensitivity—or make detection possible—the team developed a specialized system which combines all signals from Mauna Kea’s SMA dishes, letting Hawai’i act as a single EHT station.

Beaming-coordinating signals from night-time (western) half of the globe employs optimum use of precious telescope time when the other—Asian—hemisphere is in daylight.

After separately recording signals at all thirteen telescopes, data are flown to a single location and combined by computer to create an image by a virtual Earth-size telescope—first of its kind.

Petabytes, Raw Data and Red Shift
Lindy Blackburn, EHT data processing team leader and coauthor explains that EHT holds millions of gigabytes of data from many telescopes that weren’t originally designed to work together. ‘We developed multiple pathways to process and calibrate data, using new algorithms to stabilize the Earth’s atmosphere and to align the signals from all sites within trillionths of a second precisely.’

Rapidly spinning supermassive hole surrounded by its accretion disc of rotating leftovers from Sun-like star ripped apart by the hole’s tidal force, courtesy ALMA Large Array, Atacama

Telescopes contributing to this result were ALMA*, APEX, the Spanish IRAM 30-meter telescope, the James Clerk Maxwell Telescope, the Large Millimeter Telescope Alfonso Serrano, the Submillimeter Array, the Greenland Submillimeter Telescope, and the South Pole Telescope. Petabytes of raw data from all telescopes were combined by highly specialized supercomputers hosted by the Max Planck Institute for Radio Astronomy in Munich, and MIT Haystack Observatory, Cambridge, MA.
*Atacama Large Millimeter-Submillimeter Array in Andes high desert, Chile

Global teamwork meant a close collaboration by astrophysicists, technicians and researchers around the world—and a first for science.

Construction of the EHT and this week’s observations represent the culmination of decades of close technical theoretical work. Thirteen partner institutions worked together to create the EHT, using both pre-existing infrastructure and support from a variety of world agencies. Key funding was provided by the US National Science Foundation (NSF), EU’s European Research Council (ERC), and funding agencies in East Asia, above.

On a planetary level, we sci-fi addicts thank the team for rising above national barriers and creating something previously only dreamed of.

On a Cosmic level—look out—unlimited data incoming.
©2019 Siderealview

We are Stardust taking Destiny into our own hands

September 15, 2009

Sacred geometry, sacred comfort zone

Sacred geometry, sacred comfort zone

The crop circle phenomenon is really rocking the boat; even though there have been no further crop circles imprinted on Wiltshire farms (or elsewhere) since August 29th this year, world interest is piqued and they’ve picked up the baton and won’t put it down. Even Google, when I opened my mailbox this morning, had ‘Google’ written in croppie image in the bookmarks bar. If Google knows about crop circles, I assure you the whole world knows.

What is less certain is why we have become obsessed with these beautiful creations.

A very small percentage of world population lives in rural Wiltshire, Hampshire and Oxfordshire, but that is where the crop circles are: each summer another series more sophisticated and intriguing than the summer before.

Holland and Germany, Scotland and the NW Pacific states of the U.S. have had a smattering, but the bulk of appearances has occurred within the sacred precinct of ancient tombs and temples in the Cotswolds and Marlborough Downs. They are often accompanied by high frequency sound and more-than-average people-friendly feelings.

There are already an enormous number of electro-magnetic nodes in this rolling countryside. They attract fluctuations in compass readings, making dowsers mightily confused: cell-phones are turned off because their signals are useless; camera batteries recharge spontaneously. The magnetic nodes are what Neolithic farmers noticed in the land; it inspired them to build solar doorways made of stone: lunar alignments in megalithic grandeur stretch as far as the eye can see.

Now a more cosmic imprint appears in this anomalous zone. And it is affecting visitors who have described sensations of ‘deep peace’, a desire to be ‘at one with’ and share their experience with others in the circle, an ‘inner glow’.

Is it too far-fetched to call them messages from the stars?

Before he died in 1996, American astrophysicist and quantum astronomer Carl Sagan was convinced we as an evolving race were capable of using our intelligence and technology to reach the stars. He would have been the first to express jubilation at the fact that the stars may be reaching out to us in return.

‘We are stardust taking our destiny into our own hands’: his words.

One of his ‘babies’ was SETI, the search for extra-terrestrial intelligence; he spent years devising mathematical code which could be sent in pulses via (in his day) the world’s largest radio telescope in Arecibo, Puerto Rico. He envisioned pulses returning from a distant intelligence, advanced enough to understand and use mathematical signatures as a common cosmic language. When Sagan died of bone-marrow cancer in 1996, computers were large, but the internet was in its infancy. He could only dream that a radio beam of binary pulses would elicit a response from a stellar region in the middle of the Milky Way; of how a mere 13 years later computer code would be the new means of communication. He might have guessed.

He called the essence of number the ‘Rosetta stone’, the common language of science and mathematics. He was prophetic when he described distant intelligence as ‘someone fond of mathematics’, using our own knowledge to beam back to us a message we too might understand.

Fractal Wave image near Avebury Wiltshire June 2008

Fractal Wave image near Avebury Wiltshire June 2008

Sacred geometry and music have much in common: harmony of sound is reflected in the harmony expressed in mathematical Fibonacci numbers – or a cascade of increasing dimensions seen as visually perfect, the Golden Mean. After 2007, a year of curvaceous designs leading the eye and enhancing the land, 2008 brought patterns that upped the ante: in June a Pythagorean Comma graced a Yatesbury field near the ancient sacred site of Avebury. This ‘standing wave fractal’ was described by University of York electronics expert James Lyons as a pictorial rendition of the harmonic scale on a piano. “The Universe is a glorious keyboard with strings between every atom of matter (holographic) and by implication all mankind!” In July a crop circle depicting swallows (the totem bird of perspective) had a second layer added on a successive night. There were other ‘multiple’ sequential patterns. August culminated in a magnificent sacred ‘rose window’ motif (top) and several indications of the number eight or viewed laterally, infinity. Visitors to August formations were seen to kneel in prayer, sound the ‘Om’ and share food, water and animated conversation with their fellows in the barley.

The 2009 season has been heavily laced with 2012 images from the calendar of the Maya: the single remaining earth civilization still to count mankind’s progression in ‘Ages’. We humans are nearing the end of the final Mayan ‘Great Cycle’, scheduled to complete on 12 December 2012 (12/12/12). Also a record number of cropcircles in 2009 produced images of Fibonacci sequences, DNA strands of our own double helix as well as an enhanced multi-strand variation (significant, below), and a plethora of holograms or three-dimensional material bridging the divide between sound, mathematics, philosophy and spirituality.

In all this splendour, a little croppie found in a Chilbolton field in Hampshire in 2001 may have been overlooked:

Binary sequence sent from Arecibo

Binary sequence sent from Arecibo

The Arecibo message sent on November 16th 1974 by Carl Sagan and his SETI cohorts was by design formulated as a sequence of 1679 pulses of sound in binary code (zeros and ones). It was beamed at the M13 stellar cluster in the constellation of Hercules, 25,000 light years distant. Because SETI was attempting to communicate with high caliber intelligence by means of a cosmic language (feet, meters, inches would have no meaning) it used the combination of two prime numbers, 23 and 73, as the logical format: 23 columns of 73 rows (23×73=1679) figure at left. For clarity, the zeros and ones are shown as black and white.

The message was brief. It gave in simple terms the numbers 1 – 10; Atomic numbers 1,6,7,8,15 of the elements of Life, Hydrogen, Carbon, Nitrogen, Oxygen and Phosphorus; a larger section describing the sugars and bases in the nucleotides of DNA with its double helix; a human figure (stick man) with a height of 5ft9ins expressed in ‘wavelength units’; earth’s then population of 4.29 billion (1974 value); a diagram of the solar system, nine planets and sun, with Earth placed above the others to indicate origin of the code; and a curved diagram of the radio telescope from which it was sent.

In 2001, 27 years after transmission, an answer came back. With a few differences. Binary code of zeros and ones highlighted in black and white, appears below, right. Differences are highlighted in red. On the left is the ‘answer’ which arrived on the night of August 21st, 2001 in Chilbolton, Hampshire in a field next to the Chilbolton radio telescope. (Arecibo has no barley fields; it’s on a mountain top). At Chilbolton, flattened crop are zeros, standing stalks are ones.

Chilbolton variations on an Arecibo theme

Chilbolton variations on an Arecibo theme

Numbers 1 – 10 return unaltered. In the second sequence, the atomic weight, 14, of silicon has been added in its correct position on the Periodic Table. [Silicon is the constituent of crystalline structure; this should excite light beings and crystal consciousness supporters everywhere]. There is a change in the number of nucleotides in DNA, which is coincidentally given an additional strand. Our stick man is replaced by a shorter being (3ft 4ins) with larger head. The ‘population’ figure in decoded binary sequence equates to 21.3 billion. In addition to Earth, the fourth and fifth planets are highlighted.

Chilbolton radio telescope and crop circle

Chilbolton radio telescope and crop circle

Perhaps the population figure is intended to cover all three planets. Or it may represent a distant planetary system where the fourth and fifth are the ones with life. ET doesn’t say. The final sequence depicts not a radio telescope, but a crop formation occurring in the same field the year before. Their previous communication (2000) had fallen on deaf ears. ET was hoping this one didn’t.

While there was a flurry of interest shown in astrophysical circles at the time of the Chilbolton appearance, the general public was unaware of its significance. Criticism ensued from astronomers who knew that a radio transmission would take hundreds of years to reach a distant star system. The crop circle response was generally discredited.

It is interesting to note, however, that after Carl Sagan died, Arecibo sent a second transmission in 1999, this time aimed at the Vega, Deneb, Altair triangle and at the time there were several solar system planets and the moon in the transmission ‘window’. If the code happened to get fielded by ET in the Jupiter moon system, or one of Saturn’s orbiting bodies, the time lapse for a response is less fantastical, more worthy of consideration.

Any transmission from the stellar regions is worth our consideration, don’t you think? Our world may be about to change beyond all recognition. Our future may depend on it. Carl Sagan come out, come out, wherever you are.

Much of the research on the Chilbolton crop circle was carried out by Paul Vigay, a talented mathematician and electronics wizard, to whom this blog is dedicated. He died suddenly in 2008.


%d bloggers like this: